SEMESTER-ONE

Class XI

Sample Paper—2

Max. Marks: 50

Time Allowed: 90 minutes

General Instructions:

- (i) This question paper consists of 40 questions in 4 sections.
- (ii) Section A consists of 10 Objective type questions carrying 1 mark each.
- (iii) Section B consists of 10 Fill in the blanks type questions carrying 1 mark each.
- (iv) Section C consists of 10 True or False statement type questions carrying 1 mark each.
- (v) Section D consists of 10 Short answer type questions carrying 2 marks each.

Section A

Select and write one most appropriate option out of the four options given for each of the questions 1-10.

- **1.** A projectile is given an initial velocity of $(\hat{i} + 2\hat{j})$ m s⁻¹ where \hat{i} is along the ground and \hat{j} is along the vertical. If g = 10 m s⁻², the equation of its trajectory is
 - (a) $4y = 2x 25x^2$ (b) $y = x 5x^2$

(c) $y = 2x - 5x^2$	(d) $4y = 2x - 5x^2$
---------------------	----------------------

2. The distance x covered by a particle varies with time t as $x^2 = 2t^2 + 6t + 1$. Its acceleration varies with x as

(a)	x	(<i>b</i>)	x^2
(<i>c</i>)	x^{-1}	(d)	x ⁻³

3. Two circular loops A and B of radii r_A and r_B respectively are made from the same uniform wire. The ratio of their moments of inertia

about axes passing through their centres and perpendicular to their planes is $I_B/I_A = 8$. Then $(r_B/r_A) =$

(a) 2 (b) 4

(c) 6 (d) 8.

4. Consider a body, shown in figure, consisting of two identical balls, each of mass M connected by a light rigid rod. If an impulse J = MV is imparted to the body at one of its ends, what would be its angular velocity?

5. A turntable rotates about a vertical axis with a constant angular speed ω . A circular pan rests on the turntable and rotates along with the table. The bottom of the pan is covered with a uniform thick layer of ice which also rotates with the pan. The ice starts melting. The angular speed of the turntable

```
(a) decreases
```

```
(b) increases
```

- (c) remains the same as ω
- (d) data insufficient.
- 6. Water is poured from a height of 10 m into an empty barrel at the rate of 1 litre per second. If the weight of the barrel is 10 kg, the weight indicated at time t = 60 s will be

(a)	71.4 kg	(<i>b</i>)	68.6	kg
<i>′</i> ``			~ . ~	

- (c) 70.0 kg (d) 84.0 kg.
- 7. A stationary particle explodes into two particles of masses m_1 and m_2 which move in opposite directions with velocities v_1 and v_2 . The ratio of their kinetic energies E_1/E_2 is

(a)
$$m_2/m_1$$
 (b) m_1/m_2
(c) 1 (d) m_1v_2/m_2v_1 .

8. A body of mass *m* has a kinetic energy equal to one-fourth kinetic energy of another body of mass m/4. If the speed of the heavier body is increased by 4 m s⁻¹, its new kinetic energy equals the original kinetic energy of the lighter body. The original speed of the heavier body in m s⁻¹ is

(<i>b</i>)	6
	(<i>b</i>)

- (c) 4 (d) 2.
- **9.** A toy gun has a spring of force constant k. After charging the spring by compressing it through a distance of x, the toy releases

a shot of mass m vertically upwards. Then the shot will travel a vertical height of

(a)
$$\frac{2mg}{kx^2}$$
 (b) $\frac{kx^2}{mg}$
(c) $\frac{kx}{mg}$ (d) $\frac{kx^2}{2mg}$.

10. A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement x is proportional to

(a) x^2 (b) e^x

(c) x (d) $\log_e x$.

Section B

Fill in the blanks with a suitable word for each of the questions 11–20.

- **11.** The horizontal range of a projectile is maximum when the angle of projection is ______ .
- **12.** The graph between displacement and time for a particle moving with uniform acceleration is a ______ .
- 13. A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 m s⁻². The opposing force of air on the body is _____ (g = 9.8 m s⁻²).
- 14. A car of mass 1500 kg is moving with a speed of 12.5 m s⁻¹ on a circular path of radius 20 m on a level road. The value of coefficient of friction between the tyres and road, so that the car does not slip, is ______.
- **15.** A force of 200 N is required to push a car of mass 500 kg slowly at constant speed on a level road. If a force of 500 N is applied, the acceleration of the car (in m s⁻²) will be ______.
- **16.** When a bucket containing water is rotated fast in a vertical circle of radius R, the water in the bucket doesn't spill provided ______.
- 17. An insect is crawling up on the concave surface of a fixed hemispherical bowl of radius R. If the coefficient of friction is $\frac{1}{3}$, then the height up to which the insect can crawl is nearly _____.
- **18.** A windmill converts wind energy into electrical energy. If v is the wind speed, electrical power output is proportional to ______.

- 19. An automobile travelling with a speed of 60 km h⁻¹, can brake to stop within a distance of 20 m. If the car is going twice as fast, *i.e.*, at 120 km h⁻¹, the stopping distance will be ______.
- **20.** A uniform chain of length 2 m is kept on a table such that a length of 60 cm hangs freely from the edge of the table. The total mass of the chain is 4 kg. The work done in pulling the entire chain on the table is ______ .

Section C

State whether the following statements are true or false for each of the questions 21–30.

- **21.** The magnitude of the vector is called the modulus of the vector.
- **22.** If a body is projected at a certain angle with the horizontal, then the body is called an horizontal projectile.
- **23.** An object follows a circular path at a constant speed, the motion of the object is called uniform oscillatory motion.
- **24.** A particle executing such a motion is always in *stable equilibrium* about its mean position.
- **25.** The sum of the vectors remains the same in whatever order they may be added.
- **26.** A couple is a set of three equal (in magnitude), opposite (in direction) forces having different lines of action.
- **27.** When potential energy is minimum, the particle is said to be in stable equilibrium.
- **28.** The tyres of the vehicles are made rough to increase friction.
- **29.** The time rate of change of momentum of a body is proportional to the impressed force.
- **30.** To every action, there is always an unequal (in magnitude) and opposite (in direction) reaction.

Section D

Answer each of the questions 31–40.

- **31.** Name five physical quantities which change during the motion of an oblique projectile.
- **32.** A body is projected so that it has maximum range R. What is the maximum height reached during the flight?

- **33.** What is the source of centripetal force in the case of an electron revolving around the nucleus?
- **34.** What is the effect on the direction of the centripetal force when the revolving body reverses its direction of motion?
- **35.** Why is electrical power required at all when the elevator is descending? Why should there be a limit on the number of passengers in this case?
- **36.** A projectile of mass m is projected with velocity v at an angle θ with the horizontal. What is the magnitude of the change in momentum of the projectile after time t?
- **37.** The maximum horizontal range of a cannon is 4 km. What is the muzzle velocity of the shell, if $g = 10 \text{ m s}^{-2}$?
- **38.** Is the angular velocity of rotation of hour hand of a watch greater or smaller than the angular velocity of Earth's rotation about its own axis?
- **39.** (i) What is the direction of the angular velocity of the minute hand of a wall-clock?
 - (ii) When the car takes a turn round a curve, a passenger sitting in the car tends to slide. To which side does the passenger slide?
 - (iii) Comment on the statement 'sharper the curve, more is the bending'.
- **40.** A ball, dropped from a height of 8 m, hits the ground and bounces back to a height of 6 m only. Calculate the fractional loss in kinetic energy.